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Given a regular chessboard, can you place eight queens on it, so that no two queens
attack each other? More generally, given a square chessboard with N rows and N
columns, can you place N queens on it, so that no two queens attack each other?

Figure 1. A solution to the eight queens problem.

This puzzle, known as the N queens problem, is old, and famous, and has an ex-
tensive history. Here we present a recently formulated elaboration, which we call the
N + k queens problem. We describe some of what is known about the N + k queens
problem, prove a few new results, and propose some open questions.

The problem

Clearly, we can put no more than N mutually nonattacking queens on the N x N
board, since a row (or column) with two queens has queens that attack each other.
However, if other pieces (let’s call them pawns) block the attacks, we can place more
nonattacking queens. If we place k pawns on the board, we can sometimes place N + k
nonattacking queens, but never more than that. So, we have what we call the N + k
queens problem:

The N + k Queens Problem. Let N > 1 and k > 0 be integers. On an N x N
chessboard, can you place N + k queens and k pawns so that any two queens on the
same row, column, or diagonal have at least one pawn between them?
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For what N and k are there solutions to the N + k queens problem? If kK = 0, then
we have the N queens problem for which solutions exist for N = 1 and N > 4. Next
is k = 1. By [6, Theorem 1], the N 4 1 queens problem has solutions for all N > 6.
The proof involves taking known solutions to the M queens problem for some M < N
and adding some rows, some columns, some queens, and a pawn in systematic ways
to obtain patterns that are verifiably solutions to the N + 1 queens problem. Here is
one such pattern, which works for even numbers N > 6 not of the form 6m + 4:

Pattern. Let M = N — 2 and number the rows of the N x N board —1,0,1,... , M
and the columns —2, —1,0, ... , M — 1. (See Figure 2.) Place the pawn in the square
in row M/2 — 1 and column —1, i.e., at position (M /2 — 1, —1), and the queens at
M/2—-1,-2),(M,—1),(—1,—1),2i +1,i)for0 <i < M/2,and (2i — M, i) for
M/2 <i<M.

Figure 2. A solution to the 6 + 1 queens problem.

How do we verify such a pattern? We easily check that when two queens are in the
same row or the same column, that the pawn is between them. If two queens were in
the same rising diagonal, then row — column would be the same for both queens. If
two queens were in the same falling diagonal, then row 4 column would be the same
for both queens. With many “elementary but tedious calculations” [6], we verify that
each queen has a different row + column number and that each queen has a distinct
row — column number. So for this pattern no two queens are on the same diagonal.
Other patterns have similar verifications.

For other &, according to [4, Theorem 11], if N > max{87 + k, 25k}, then there is a
solution to the N + k queens problem. The proof also involves taking known solutions
to the M queens problem for some M < N, and adding extra rows, columns, queens,
and pawns in systematic ways to obtain patterns that can be verified as being N + k
queens problem solutions.

The above result, combined with computer searches, tells us that the N 4 2 queens
problem has solutions for all N > 7, and that the N + 3 queens problem has solutions
for all N > 8 [4, p. 8]. This evidence, and the results in Table 1, leads us to believe
that the bounds given by [4, Theorem 11] can be greatly decreased. In any event, the
following question is open.

Open Question 1. Fork > 3, determine the values of N for which the N 4 k queens
problem has a solution.
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Connections with alternating sign matrices

As demonstrated in Figures 3 and 4, we can transform an N + k queens problem
solution into a matrix by replacing each empty square with a 0, each queen with a 1,
and each pawn with a —1. Consider an N + k queens problem solution. Each pawn
divides its row (or column) in at most two segments, so k pawns create at most k extra
row segments. Since there are N + k queens, and only one can go in each segment, so
there must be N + k segments and each must have exactly one queen in it. In each row
(or column), between any two queens there is a pawn, between any two pawns there
is a queen, and the first and last pieces must be queens. So, if you replace each empty
square with a 0, each queen with a 1, and each pawn with a —1, you have what is called
an alternating sign matrix (ASM): a square matrix consisting of 0s, 1s, and —1s where
the sum of the entries in each row and column is 1 and the nonzero entries in each
row and column alternate in sign [1, p. 3]. However, not all ASMs are N + k queens
problem solutions—the ASM definition doesn’t require alternation in the diagonals.
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Figure 4. A solution to the 8 + 2 queens problem and its matrix representation.
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If we consider rooks (which move vertically and horizontally, but not diagonally)
rather than queens, then we can prove that an ASM represents an N + k rooks problem
solution and vice versa.

Theorem 1. Let N > 1 and k > 0 be integers. There is a one-to-one correspon-
dence between the set of N x N alternating sign matrices with k entries equal to —1
and the set of solutions to the N + k rooks problem.

Proof. The argument of the preceding paragraphs implies that every N + k rooks
or queens problem solution corresponds to an ASM. Suppose, conversely, that we have
an N x N ASM with k —1s. Since the nonzero entries in each row add up to 1, and
the nonzero entries in a row alternate in sign, each row has one more rook than it does
pawns, so there are a total of N + k rooks. Since the nonzero entries in each row and
column alternate in sign, whenever two rooks are in the same row or column, there is
at least one pawn between them. Hence, an ASM represents an N + k rooks problem
solution. Thus we have a one-to-one correspondence between the set of N + k rooks
problem solutions for a given N and k and the set of N x N alternating sign matrices
with k —1s. ]

Theorem 1, which is new, implies that results about alternating sign matrices are
also results about N + k rooks problem solutions. For example, consider the famous
Alternating Sign Matrix Conjecture, made by Mills, Robbins, and Rumsey in 1983
[10], which declares that the number A, of alternating sign matrices of order n is
given by the formula:

4 _’ﬁ(3j+1)!
s (!

Zeilberger proved this conjecture with the aid of a computer in 1995 [17] and Kuper-
berg produced a different proof using tools of statistical mechanics in 1996 [8]. Now,
if we fix N and add up the numbers of N + k rooks problem solutions for all &, the
total is A,. Theorem 1 suggests the following tantalizing question.

Open Question 2. There are boards for which more than k pawns are needed in
order to accommodate k extra queens. For example, in her thesis [18], Kaiyan Zhao
showed that three pawns are needed in order to place six mutually nonattacking queens
on a5 x 5 chessboard. The matrix for such an arrangement is not an alternating sign
matrix. (Two pawns in a row or column need not have a queen between them.) Is there
an interesting theory of these “weakly alternating sign matrices”? In particular, is there
a nice formula for the number of such matrices of order n?

Symmetry of solutions of the N + k queens problem

There are eight symmetries of the square: rotations of 0, 90, 180, and 270 degrees,
vertical reflections, horizontal reflections, and diagonal reflections. The numbers of
ASMs with each of these symmetries are mostly known (see [9], [11], [13], and [14]),
with the exception of diagonal reflection. For any N > 4, the set of N queens problem
solutions can be divided [16, pp. 174—175] into three classes:
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* ordinary solutions, which are symmetric only with respect to 0 degree rotation.

* centrosymmetric solutions, which are symmetric with respect to 180 degree rotation,
but not 90 degree rotation. Figure 1 is an example of a centrosymmetric solution.

* doubly centrosymmetric solutions, which are symmetric with respect to all rotations.
Figure 5 is an example.

Figure 5. A doubly centrosymmetric solution to the five queens problem.

Note that, except for the trivial solution when N = 1, no N queens problem solution
is symmetric with respect to a reflection. (Try it, and you’ll see that at least one queen
will be attacked, usually by its symmetric duplicate.) We now extend this result to the
N + k queens problem.

Theorem 2. No solution to the N + k queens problem (where N > 1) is symmetric
with respect to a horizontal, vertical, or diagonal reflection.

Proof. First we deal with vertical mirror symmetry. Suppose we have an arrange-
ment of N + k mutually nonattacking queens and k pawns on an N-by-N board sym-
metric with respect to a vertical mirror. If N is even, then the queens in the two central
columns must be adjacent and thus attacking. If N is odd, then each cell of the central
column must be occupied, since otherwise the pieces in the row which are closest to
the central empty square are identical, which contradicts the fact that the arrangement
is a disguised alternating sign matrix. The central column must then have a queen in
its first, third, and every other subsequent row—ijust as in Figure 6. But then all the
squares in the columns next to the central column are attacked by queens. Since each
column must have at least one queen, we have queens attacked by other queens, which
contradicts the given that none of the queens attack other queens. So we can’t have
symmetry with respect to a vertical mirror. Repeating the previous argument with our
head turned, we also eliminate horizontal mirror symmetry.

Figure 6. If an N + k queens problem solution were symmetric with respect to a vertical
mirror, the central column would look like this.
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Next we eliminate diagonal symmetry. Suppose we have an N + k queens prob-
lem solution symmetric with respect to the main diagonal. By the properties of an
alternating sign matrix, we know that there is no pawn in the cell in the first row and
first column. Suppose there is no pawn in the upper left k-by-k corner. (In Figure 7,
k = 3.) If there is a pawn in the upper left (k + 1)-by-(k + 1) corner, say at (m, k + 1),
then we have a queen at some (p, k + 1) for p < m. (In Figure 7, m =2 and p = 1.)
By symmetry, we have a queen at (k + 1, p) which is on the same rising diagonal
as (p, k + 1). Either those queens attack or there is a pawn between them. If there is
a pawn between them, that pawn must be in the upper left k-by-k square. So by in-
duction, there are no pawns on the board at all. We have a diagonally symmetric N
queens problem solution, which is already known to be impossible. Again, by turning
our heads just right we can eliminate the other kind of diagonal symmetry. [ ]

Figure 7. Proof that a diagonally symmetric
N + k queens problem solution has no pawns.

Open Question 3. As Table 1 [3] indicates, centrosymmetric solutions to the N + k
queens problem seem to be rare. Doubly centrosymmetric solutions are even rarer.
We’ve only found 4 doubly centrosymmetric N + k queens problem solutions with

Table 1. In each cell, the first number is the number of centrosymmetric N + k queens
problem solutions and the second number is the total number of N + k queens problem
solutions.

page 209

N k=1 k=2 k=3 k=4

6 (0, 16) 0,0) 0,0) 0,0)

7 (4, 20) 4,4) 0, 0) 0,0)

8 (0, 128) (4, 44) 0, 8) 0,0)

9 (20, 396) (16, 280) (4, 44) 0, 8)
10 (0,2288) (8,1304) (0, 528) (0, 88)
11 (72, 11152) (124, 12452) (32, 5976) (32, 1688)
12 (0,65172) (52, 105012) (0, 77896) (20, 30936)
13 (200, 437848) (568, 977664) (492, 1052884) (564, 627916)
14 (0,3118664) (1008, 9239816) (0, 13666360) (804, 11546884)
15 (2608, 23387448) (6284, 90776620) (6164, 179787988)

16 (0, 183463680) (12932, 897446092)

17 | (17040, 1474699536)
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k > 0. (Those solutions occur at N = 12 and k = 4.) So, how rare are the centrosym-
metric and doubly centrosymmetric solutions?

Conclusion

For more information about the N queens problem, see [7], [15], and [16]. For more
about the N + k queens problem and related problems, see [6], [4], and [S] (Preprints
are available online at [3]). For those interested in alternating sign matrices, we suggest
[1], [2], and [12].

We conclude with a final open question:

Open Question 4. If we consider a chessboard that’s been made a cylinder or a
torus by gluing together the appropriate sides, what sort of queens problem solutions
and matrices will we get? Also, what sorts of matrices do we get if we look at other
pieces, like the king and bishop?

Acknowledgment. The author wishes to thank the anonymous referees and the editor, whose helpful comments
vastly improved this paper.
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